忍者ブログ

Memeplexes

プログラミング、3DCGとその他いろいろについて

C#でOpenCL入門 チュートリアルその8 データ並列

 前回はついにGPUを使って計算(というか代入)しました。
しかし、せっかくGPUを使っているというのにシングルスレッドでした。
これではなんのためにGPUを使っているのかわかりません。

今回は、OpenCL Cで書いたプログラムを並列に実行してみましょう。

データ並列で実行

カーネル(OpenCL Cで書いたGPU用プログラム)を並列に実行するには、clEnqueueNDRangeKernel関数を使います。
参考

cl_int clEnqueueNDRangeKernel(
    cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t *global_work_offset,
    const size_t *global_work_size,
    const size_t *local_work_size,
    cl_uint num_events_in_wait_list,
    const cl_event *event_wait_list,
    cl_event *event
)

command_queueは実行を受け持つコマンドキューです。(ですから、直ちには実行されません。)
kernelは実行するカーネル関数です。
work_dimは実行するスレッド群の次元です。1~CL_DEVICE_MAX_WORK_ITEM_DIMENSIONSまでの値を取ることが出来ます。
global_work_offsetはグローバルIDのオフセットです。NULLでも構いません。
global_work_sizeは全スレッドの量を表します。
local_work_sizeは1グループのスレッドの量を表します。
num_events_in_wait_listevent_wait_listは、この実行コマンドを実行にうつす前にすでに起きていなければいけないイベントのリストを表します。
eventは、このコマンドが実行されたことを知らせるイベントを返します。NULLでも構いません。

さて次元だとかグループだとかよくわからない話が出てきました。
これはどういう事でしょうか?

DirectX11の時にも話したのですが、GPGPUをするときにはスレッドがこのようにたくさん用意されます。

gpgpuThreads3D.png



実行されるスレッドは3次元の箱のように配置されます。
そしてこれが次のように分割されます:

gpgpuThreadsGrouped.png

GPUの演算ユニットは、いくつかのグループをなしています。
そのためスレッドもグループをなすことになります。
ちなみにOpenCL Cの__local変数は、このグループの中で共有される変数だというわけです。

この関数の次元とは、スレッドが何次元に配置されるかを表します。
DirectXでは3次元でしたが、OpenCLでは1次元もありです(つまり横に並べただけ)。
その次元数をwork_dim変数にセットするのです。

サンプルコード


MyProgram.cs
using System;

class MyProgram
{
    static void Main()
    {
        IntPtr device = getDevices(getPlatforms()[0], DeviceType.Default)[0];
        Context context = new Context(device);
        CommandQueue commandQueue = new CommandQueue(context, device);

        Program program = new Program(context, System.IO.File.ReadAllText("myKernelProgram.cl"));
        program.Build(device);

        Kernel kernel = new Kernel(program, "myKernelFunction");
        const int bufferSize = 3;
        Buffer buffer = Buffer.FromCopiedHostMemory(context, new float[bufferSize]);
        kernel.SetArgument(0, buffer);

        commandQueue.EnqueueRange(kernel, new MultiDimension(bufferSize), new MultiDimension(1));

        float[] readBack = new float[bufferSize];
        commandQueue.ReadBuffer(buffer, readBack);

        foreach (var number in readBack)
        {
            Console.WriteLine(number);
        }
    }

    private static IntPtr[] getDevices(IntPtr platform, DeviceType deviceType)
    {
        int deviceCount;
        OpenCLFunctions.clGetDeviceIDs(platform, deviceType, 0, null, out deviceCount);
       
        IntPtr[] result = new IntPtr[deviceCount];
        OpenCLFunctions.clGetDeviceIDs(platform, deviceType, deviceCount, result, out deviceCount);
        return result;
    }


    private static IntPtr[] getPlatforms()
    {
        int platformCount;
        OpenCLFunctions.clGetPlatformIDs(0, null, out platformCount);

        IntPtr[] result = new IntPtr[platformCount];
        OpenCLFunctions.clGetPlatformIDs(platformCount, result, out platformCount);
        return result;
    }
}
 

OpenCLWrappers.cs
using System;
using System.Runtime.InteropServices;

class Context
{
    public IntPtr InternalPointer { get; private set; }

    public Context(params IntPtr[] devices)
    {
        int error;
        InternalPointer = OpenCLFunctions.clCreateContext(
            null,
            devices.Length,
            devices,
            null,
            IntPtr.Zero,
            out error
            );
    }

    ~Context()
    {
        OpenCLFunctions.clReleaseContext(InternalPointer);
    }
}

class CommandQueue
{
    public IntPtr InternalPointer { get; private set; }

    public CommandQueue(Context context, IntPtr device)
    {
        int error;
        InternalPointer = OpenCLFunctions.clCreateCommandQueue(
            context.InternalPointer,
            device,
            0,
            out error
            );
    }

    ~CommandQueue()
    {
        OpenCLFunctions.clReleaseCommandQueue(InternalPointer);
    }

    public void ReadBuffer<T>(Buffer buffer, T[] systemBuffer) where T : struct
    {
        GCHandle handle = GCHandle.Alloc(systemBuffer, GCHandleType.Pinned);

        OpenCLFunctions.clEnqueueReadBuffer(
            InternalPointer,
            buffer.InternalPointer,
            true,
            0,
            Math.Min(buffer.SizeInBytes, Marshal.SizeOf(typeof(T)) * systemBuffer.Length),
            handle.AddrOfPinnedObject(),
            0,
            IntPtr.Zero,
            IntPtr.Zero
            );

        handle.Free();
    }

    public void EnqueueRange(Kernel kernel, MultiDimension globalWorkSize, MultiDimension localWorkSize)
    {
        MultiDimension offset = new MultiDimension();
        OpenCLFunctions.clEnqueueNDRangeKernel(
            InternalPointer,
            kernel.InternalPointer,
            globalWorkSize.Dimension,
            ref offset,
            ref globalWorkSize,
            ref localWorkSize,
            0,
            null,
            IntPtr.Zero
            );
    }
}

class Buffer
{
    public IntPtr InternalPointer { get; private set; }
    public int SizeInBytes { get; private set; }

    private Buffer() { }

    ~Buffer()
    {
        OpenCLFunctions.clReleaseMemObject(InternalPointer);
    }

    public static Buffer FromCopiedHostMemory<T>(Context context, T[] initialData) where T : struct
    {
        Buffer result = new Buffer();
        result.SizeInBytes = Marshal.SizeOf(typeof(T)) * initialData.Length;

        int errorCode;
        GCHandle handle = GCHandle.Alloc(initialData, GCHandleType.Pinned);

        result.InternalPointer = OpenCLFunctions.clCreateBuffer(
            context.InternalPointer,
            MemoryFlags.CopyHostMemory,
            result.SizeInBytes,
            handle.AddrOfPinnedObject(),
            out errorCode
            );

        handle.Free();
        return result;
    }
}

class Program
{
    public IntPtr InternalPointer { get; private set; }

    public Program(Context context, params string[] sources)
    {
        int errorCode;

        InternalPointer = OpenCLFunctions.clCreateProgramWithSource(
            context.InternalPointer,
            sources.Length,
            sources,
            null,
            out errorCode
            );
    }

    ~Program()
    {
        OpenCLFunctions.clReleaseProgram(InternalPointer);
    }

    public void Build(params IntPtr[] devices)
    {
        OpenCLFunctions.clBuildProgram(
            InternalPointer,
            devices.Length,
            devices,
            null,
            null,
            IntPtr.Zero
            );
    }
}

class Kernel
{
    public IntPtr InternalPointer { get; private set; }

    public Kernel(Program program, string functionName)
    {
        int errorCode;
        InternalPointer = OpenCLFunctions.clCreateKernel(
            program.InternalPointer,
            functionName, 
            out errorCode
            );
    }

    ~Kernel()
    {
        OpenCLFunctions.clReleaseKernel(InternalPointer);
    }

    public void SetArgument(int argumentIndex, Buffer buffer)
    {
        IntPtr bufferPointer = buffer.InternalPointer;
        OpenCLFunctions.clSetKernelArg(
            InternalPointer,
            argumentIndex,
            Marshal.SizeOf(typeof(IntPtr)),
            ref bufferPointer
            );
    }
}

OpenCLFunctions.cs
using System;
using System.Runtime.InteropServices;

static class OpenCLFunctions
{
    [DllImport("OpenCL.dll")]
    public static extern int clGetPlatformIDs(int entryCount, IntPtr[] platforms, out int platformCount);

    [DllImport("OpenCL.dll")]
    public static extern int clGetDeviceIDs(
        IntPtr platform,
        DeviceType deviceType,
        int entryCount,
        IntPtr[] devices,
        out int deviceCount
        );

    [DllImport("OpenCL.dll")]
    public static extern IntPtr clCreateContext(
        IntPtr[] properties, 
        int deviceCount,
        IntPtr[] devices,
        NotifyContextCreated pfnNotify,
        IntPtr userData,
        out int errorCode
        );

    [DllImport("OpenCL.dll")]
    public static extern int clReleaseContext(IntPtr context);

    [DllImport("OpenCL.dll")]
    public static extern IntPtr clCreateCommandQueue(
        IntPtr context,
        IntPtr device,
        long properties,
        out int errorCodeReturn
        );

    [DllImport("OpenCL.dll")]
    public static extern int clReleaseCommandQueue(IntPtr commandQueue);

    [DllImport("OpenCL.dll")]
    public static extern IntPtr clCreateBuffer(
        IntPtr context,
        MemoryFlags allocationAndUsage,
        int sizeInBytes,
        IntPtr hostPtr,//
        out int errorCodeReturn
        );

    [DllImport("OpenCL.dll")]
    public static extern int clReleaseMemObject(IntPtr memoryObject);

    [DllImport("OpenCL.dll")]
    public static extern int clEnqueueReadBuffer(
        IntPtr commandQueue,
        IntPtr buffer,
        bool isBlocking,
        int offset,
        int sizeInBytes,
        IntPtr result,
        int numberOfEventsInWaitList,
        IntPtr eventWaitList,
        IntPtr eventObjectOut
        );

    [DllImport("OpenCL.dll")]
    public static extern IntPtr clCreateProgramWithSource(
        IntPtr context,
        int count,
        string[] programSources, 
        int[] sourceLengths, 
        out int errorCode
        );

    [DllImport("OpenCL.dll")]
    public static extern int clBuildProgram(
        IntPtr program,
        int deviceCount, 
        IntPtr[] deviceList,
        string buildOptions,
        NotifyProgramBuilt notify,
        IntPtr userData
        );

    [DllImport("OpenCL.dll")]
    public static extern int clReleaseProgram(IntPtr program);

    [DllImport("OpenCL.dll")]
    public static extern IntPtr clCreateKernel(IntPtr kernel, string functionName, out int errorCode);

    [DllImport("OpenCL.dll")]
    public static extern int clReleaseKernel(IntPtr kernel);

    [DllImport("OpenCL.dll")]
    public static extern int clSetKernelArg(IntPtr kernel, int argumentIndex, int size, ref IntPtr value);

    [DllImport("OpenCL.dll")]
    public static extern int clEnqueueNDRangeKernel(
        IntPtr commandQueue, 
        IntPtr kernel,
        int workDimension,
        ref MultiDimension globalWorkOffset, 
        ref MultiDimension globalWorkSize,
        ref MultiDimension localWorkSize,
        int countOfEventsInWaitList,
        IntPtr[] eventList,
        IntPtr eventObject
        );
}

delegate void NotifyContextCreated(string errorInfo, IntPtr privateInfoSize, int cb, IntPtr userData);
delegate void NotifyProgramBuilt(IntPtr program, IntPtr userData);

enum DeviceType : long
{
    Default = (1 << 0),
    Cpu = (1 << 1),
    Gpu = (1 << 2),
    Accelerator = (1 << 3),
    All = 0xFFFFFFFF
}

enum MemoryFlags : long
{
    ReadWrite = (1 << 0),
    WriteOnly = (1 << 1),
    ReadOnly = (1 << 2),
    UseHostMemory = (1 << 3),
    HostAccessible = (1 << 4),
    CopyHostMemory = (1 << 5)
}

struct MultiDimension
{
    public int X;
    public int Y;
    public int Z;
    public int Dimension;

    public MultiDimension(int x)
    {
        X = x;
        Y = 0;
        Z = 0;
        Dimension = 1;
    }
}


myKernelProgram.cl
__kernel void myKernelFunction(__global float* numbers)
{
int globalThreadID = get_global_id(0);
    numbers[globalThreadID] = globalThreadID;
}


このプログラムは実行すると、次のような出力をします:
 
0
1
2

このプログラムは、まずGPUのメモリに{0, 0, 0}というバッファを作ります。
そしてGPUが3スレッド使って、それぞれの要素にグローバルID(スレッドのIDのこと)を代入します。
スレッドのIDは0, 1, 2です。
それが代入されて、バッファは{0, 1, 2}となります。
最後にそれがCPU側に読み戻されて、012という出力になったわけです。
 






拍手[0回]

PR